- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Akcakaya, Murat (3)
-
Susam, Busra T. (3)
-
Conner, Caitlin M. (2)
-
Eldeeb, Safaa (2)
-
Gable, Philip A. (2)
-
Hudac, Caitlin M. (2)
-
Mazefsky, Carla A. (2)
-
Riek, Nathan T. (2)
-
White, Susan W. (2)
-
Beck, Kelly (1)
-
Conner, Caitlin (1)
-
Mazefsky, Carla (1)
-
White, Susan (1)
-
Yun, Jane (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASDEldeeb, Safaa; Susam, Busra T.; Akcakaya, Murat; Conner, Caitlin M.; White, Susan W.; Mazefsky, Carla A. (, Scientific Reports)null (Ed.)Abstract Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is often accompanied by impaired emotion regulation (ER). There has been increasing emphasis on developing evidence-based approaches to improve ER in ASD. Electroencephalography (EEG) has shown success in reducing ASD symptoms when used in neurofeedback-based interventions. Also, certain EEG components are associated with ER. Our overarching goal is to develop a technology that will use EEG to monitor real-time changes in ER and perform intervention based on these changes. As a first step, an EEG-based brain computer interface that is based on an Affective Posner task was developed to identify patterns associated with ER on a single trial basis, and EEG data collected from 21 individuals with ASD. Accordingly, our aim in this study is to investigate EEG features that could differentiate between distress and non-distress conditions. Specifically, we investigate if the EEG time-locked to the visual feedback presentation could be used to classify between WIN (non-distress) and LOSE (distress) conditions in a game with deception. Results showed that the extracted EEG features could differentiate between WIN and LOSE conditions (average accuracy of 81%), LOSE and rest-EEG conditions (average accuracy 94.8%), and WIN and rest-EEG conditions (average accuracy 94.9%).more » « less
-
Susam, Busra T.; Riek, Nathan T.; Beck, Kelly; Eldeeb, Safaa; Hudac, Caitlin M.; Gable, Philip A.; Conner, Caitlin; Akcakaya, Murat; White, Susan; Mazefsky, Carla (, IEEE Transactions on Neural Systems and Rehabilitation Engineering)
An official website of the United States government
